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SPECTRAL METHODS FOR PARTIAL DIFFERENTIAL
EQUATIONS IN IRREGULAR DOMAINS: THE SPECTRAL
SMOOTHED BOUNDARY METHOD*
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Abstract. In this paper, we propose a numerical method to approximate the solution of partial
differential equations in irregular domains with no-flux boundary conditions. The idea is to embed
the domain into a box and use a smoothing term to encode the boundary conditions into a modified
equation that can be approached by standard spectral methods. The main features of this method are
its capability to deal with domains of arbitrary shape and its easy implementation via fast Fourier
transform routines. We discuss several examples of practical interest and test the results against
standard numerical methods.
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1. Introduction. Spectral methods [1,2, 3] are among the most extensively used
methods for the discretization of spatial variables in partial differential equations and
have been shown to provide very accurate approximations of sufficiently smooth solu-
tions. Because of their high-order accuracy, spectral methods have become widespread
over the years in various fields, including fluid dynamics, quantum mechanics, heat
conduction, and weather prediction [4,5,6,7,8]. However, these methods have some
limitations which have prevented them from being extended to many problems, where
finite-difference and finite-element methods continue to be used predominantly. One
limitation is that the discretization of partial differential equations by spectral meth-
ods leads to the solution of large systems of linear or nonlinear equations involving
full matrices. Finite-difference and finite-element methods, on the other hand, lead
to systems involving sparse matrices that can be handled by appropriate methods to
reduce the complexity of the calculations substantially. Another drawback of spectral
methods is their inability to handle irregularly shaped domains, which is why these
methods have had limited use in many engineering problems, where finite-element
methods are preferred because of their flexibility in describing complex geometries
despite the computational costs associated with constructing an appropriate solu-
tion grid. Although there have been attempts to use spectral methods in irregular
domains [9,10], these approaches usually involve either incorporating finite-element
preconditioning or using the so-called spectral elements. We are not aware of any
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previous study in which purely spectral methods, particularly those involving fast
Fourier transforms (FFTs), have been used to obtain solutions in complex irregular
geometries.

In this paper we present an easy-to-use method for approximating the solution of
partial differential equations in irregular domains with no-flux boundary conditions
using spectral methods. The idea is based on what, in dendritic solidification, is
known as the phase-field method [11]. This method is used to locate and track the
interface between the solid and liquid states and has been applied to a wide variety of
problems including viscous fingering [12, 13], crack propagation [14], and the tumbling
of vesicles [15]. For a comprehensive review see [16].

In what follows we use the idea behind phase-field methods to illustrate how the
solution of several partial differential equations can be obtained in irregular domains
using spectral methods, understanding for irregular any arbitrarily shaped domain
beyond the standard rectangular or circular geometries. Throughout, for simplicity,
we will refer to the combination of the phase-field and spectral methods as the spectral
smoothed boundary (SSB) method. Our approach consists of two steps. First, the
idea of the phase-field method is formalized and its convergence analyzed for the
case of homogeneous Neumann boundary conditions. Then we discuss how the new
formulation is useful for the direct use of spectral methods, specifically those based on
trigonometric polynomials. This formulation makes the problem suitable for efficient
solution using FFTs [17]. Since it is our intention that the resulting methodology be
used in a variety of problems in engineering and applied science, we have concentrated
on the important underlying concepts, reserving some of the more formal questions
related to these methods for a subsequent analysis.

2. The phase-field (smoothed boundary) method. In this work we focus
on applying the phase-field method to partial differential equations of the form

(2.1a) V(DDYVu,) + f(us,. .. un,t) = du;

for N unknown real functions u; defined on an irregular domain {2 C R", where
n = 1,2,3 is the spatial dimensionality of the problem, together with appropriate
initial conditions u;(z,0) = w;o(x) and subject to Neumann boundary conditions

(2.1b) - DYVu; =0

on Jf), where D(j)(x) is a family of n X n matrices that may depend on the spatial
variables. Equations (2.1a) and (2.1b) include many reaction-diffusion models, such
as those describing population dynamics or cardiac electrical activity. Here we will
restrict the analysis to equations of the form (2.1a), although the idea behind the
method can be extended to many other problems involving complex boundaries and
different types of partial differential equations.

Instead of discretizing (2.1a), the smoothed boundary method (SBM) relies on
considering the auxiliary problem

(2.2) V(¢ODIVED) 46O pu, . u ) = 0,(6Ou)

for the unknown functions u§-§) on an enlarged domain ' satisfying the following

conditions: (i) @ C Q' and (i) 92 N 9Q" = 0. The function ¢¢) is continuous in
Q' and has the value one inside 2 and smoothly decays to zero outside €2, with £
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identifying the width of the decay. That is, if xq is the characteristic function of the
set ) defined as

1, ze€Q,
(23) XQ = { 0, z€ Q/\Q7

then ¢ : Q' — R is a regularized approximation to yq such that lim¢ o ¢¢ = xa-
The key idea of the SBM is that when £ — 0, the solutions u( ) of (2.2) on any

domain Q' with arbitrary boundary conditions on 9’ satisfy u(g) — uj; in other
words, they tend pointwise to the solution of (2.1a), automatlcally incorporating
the boundary conditions (2.1b). To see why, let us first realize that inside £ the
statement is inmediate since ¢(¢) — 1in Q as & — 0 and (2.2) becomes (2.1a). At the
boundary, we consider for simplicity the situation with n = 2 (the extension to n =3
is immediate). Assuming smoothness of 9Q (which in this case will be a curve) and
choosing any connected curve I' C 012, we define two families of differentiable curves
Py € Q\Q and T's-) C Q whose ends coincide with those of T' and which tend
uniformly to I' following the parameter 6. The curves I's+) and I'g—) are then the
boundaries of a region As whose boundary dAs = I's+) UTs—) (see Figure 2.1).
We now integrate (2.2) over As:

(2.4) // [V (¢ DY Vu(g))Jr(b(g)f(ut d:v—/ (¢ u®)da.
As

Using the Gauss (or Green) theorem for the first term of (2.4), we obtain
(2.5) f ii - p©DIVu do + / ¢© f(u, t)de = / (¢ Oul)dz,
3.45 A5 A&

where § denotes a line integral over dAs.
Now we take the limit £ — 0 in (2.5) to obtain

lim ¢(5>D<J>vu de = — hm/ ¢ fu, t)dx
§—0 8A5 As
£—0 As
(2.6) = m(4s) [—qb(f)f(u, 0+ atw@u;f))} e

where the last equality comes from the mean value theorem for integrals and m(As)
is the measure of the set As. Here we assume that the solutions to (2.2) and its time
derivatives are bounded so that the right-hand side of (2.6) is finite. On the left-hand
side we decompose faAg as fFéH) + fré(,)' It is straightforward that limg_o frém 7

qS(g)D(j)Vugﬁ)dx = 0, since in this limit (;5(5) =0 over all I's+) and ¢>(5) =1on s-.
As we were interested in proving that the boundary conditions are satisfied, we now
make the width of the integration region As tend to zero. Since I's_y — ' as 6 — 0,
and lims_qm(As) = 0, we obtain

lim lim ii- DY) Vu(g)dm = lim i D(j)vug'g)dm
8-06—0 [ 4, =0 Jr, |

(2.7) = / ii - DOVu de = 0.
T
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Fic. 2.1. Illustration of an irreqular domain Q0 with an example of the connected curve I' and
the domain Ag used in the proof of convergence of the method.

Since (2.7) is true for any boundary segment I', we obtain the final result that, in
the limit & — 0, (2.2) satisfies 73 - D(j)Vu§€) =0for j=1,...,N, ie., the boundary
conditions.

The idea of the SBM is then to consider (2.2) for a small but finite £ and to
discretize this problem instead of (2.1a) and (2.1b). The main advantage is that one
can search for the approximation u(¢) on any enlarged domain € such that Q C
Q. The enlarged discrete problem can then be solved with any proper boundary
conditions on 9, since the fulfillment of the boundary conditions for u on 9% is
guaranteed in the limit & — 0.

3. The SSB method. We want to discretize (2.2) on an enlarged domain €,
chosen to be a rectangular region containing €2, and we will expand u(©) in the basis
of Cartesian products of trigonometric polynomials e?*=*e?*v¥  Thus, we will seek an
extension of the solution u of (2.1a) and (2.1b) that is periodic on the enlarged region
Q.

Note that since ¢(©) is located inside the time derivative of the right term of (2.2),
it is possible for the integration domain itself to evolve in time, and thus this method
could be used to solve moving boundary problems once a coupling equation is added
for the movement of ¢&). However, here we will deal only with stationary integration
domains; thus, 9;¢¢) = 0 and the right side of (2.2) can be simplified as gb(‘f)@tugg).

Dividing (2.2) by ¢©), we get
(3.1) Vg6 DDV + v(DDVuD) 4+ f(u® 1) = 0,ul®,

which is an easier version of the equation of the SBM that we will use here to perform
the numerical simulations.

To implement numerically any solution method for (3.1), we need to make a
specific choice for ¢(¢). In practice, any method that produces a smooth characteristic
function can be used. In the context of phase-field methods, the standard procedure
for obtaining the values of ¢€) (which is called the “phase-field”) is to integrate an
auxiliary diffusion equation of the form ;¢ = £2A¢ + (29 — 1)/2 — (2¢ — 1)3/2,
with initial conditions ¢(&)(t = 0) = xq, until a steady state is reached [16,18].
Alternatively, since we seek only a smoothed boundary, we choose to obtain ¢ from
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X using a convolution of the form
(3.2) ¢ = yo x GO,

where G(©) is any family of functions such that limg o G& (z) = §(x), with §(x) being
the Dirac delta function. In particular, Gaussian functions of the form

(3.3) GO (x) = [] exp(—=7/€%)

k=1

can be chosen. In this paper, all the functions ¢¢) have been obtained using this
n-dimensional discrete convolution given by (3.3), which also have the advantage of
being efficiently computed using FFTs. An example of the creation of ¢(¢) is shown in
Figure 3.1, where it can be seen that the width of the interface in which ¢¢) changes
from zero to one depends on the value used for £ (in fact, it is of order &).

To avoid computational difficulties for very small values of ¢(¢), we approximate
log $(&) ~ log((b(f) + €), where € is the machine precision. Numerically, #© and
((b(é) + €) are equal up to roundoff errors, but this correction bounds the value of
log ¢(&) as (&) — 0. Due to the effect of the boundaries in the numerical stability of
the scheme, we also need a reasonable margin between the boundaries of the physical
and the enlarged domains. We found that a margin of value M = 10¢ is sufficient for
all the simulations to be stable [19]. Finally, all the spatial derivatives of u(&) in (3.1)
are computed in Cartesian coordinates using differentiation in Fourier space, which
as mentioned previously implicitly assumes periodic boundary conditions on 9. It
is significant that only Fourier transforms are used for these calculations instead of
differentiation matrices, thereby avoiding the generation and storage of these matrices
and yielding more efficient codes and shorter execution times, especially when FFT
routines are used.

In this paper, we are not concerned with designing the most efficient implemen-
tation of the SSB method, but only with proving that such a method can be used to
integrate partial differential equations in irregular domains. Thus, for time integra-
tion we use a simple second-order explicit method. In the particular case when all the
coefficients of the diffusion tensor D) are constants, we can write (3.1) in the form

(3.4) L&) +/\/’(u(5),t) = 9u'®,

where Lu(®) = V(DU )Vug-g)) is the linear part of the equation, while the nonlinear

term is represented by N (u(®),t) = Vlog ¢(¢) ~D(j)Vu§-f) + f(u'®,t). Then a second-
order in time operator splitting scheme of the form

(3.5) U (t + At) = EA2ZNALLAY217(E) (1)

can be used to solve the equation in time [20]. For the examples to be presented
later, we solve the nonlinear term by a second-order (half-step) explicit method and
integrate the linear part exactly in Fourier space by exponential integration, which
reduces the stiffness of the problem considerably and allows for the use of larger time
steps.
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Fic. 3.1. Left: Example of an irreqular domain Q defined on a Cartesian grid and an enlarged
domain Q. Right: Smoothing of the irreqular boundary in a one-dimensional section of the domain.
The solid line on the right shows a small section of the characteristic function xq (with value 0 or
1) corresponding to part of the thicker line shown in the left part of the figure. Smoothed boundary
functions ¢(&) obtained from xq for € = 0.10, 0.05, and 0.025 are labeled by diamonds, circles, and
stars, respectively.

4. Examples of the methodology.

4.1. The heat equation. As a first example, we will consider a simple linear
heat equation. This first case will allow us to make a quantitative study of the errors of
the SSB method. Specifically, we are interested in solving the following heat equation
with sources:

(4.1) Oyu = DAw — 1 cos(20)

in the annulus €2 defined by 1 < r < 2 with homogeneous Neumann boundary condi-
tions on 99, drul,—1 = Orul,—2 = 0. The diffusion coefficient is taken to be constant
with value D = 1. Figure 4.1 shows one example of the generation of the smoothed
boundary for this domain.

Equation (4.1) in this geometry has an explicit steady state solution of the form

8 1
42 = — _ — 2 —_— 3 2
(4.2) ust(r, 0) (57“ 20" T2 7‘2> cos(20),

which can be used to determinate the contribution to the error introduced by the
smoothing term in (2.2). Thus, (4.1) is evolved in time using the SSB method and this
explicit steady state as initial data until the new steady state is reached and deviations
from the initial condition are measured. Figure 4.2 (left) shows the L?-norm of the
error of several simulations for different values of £ and grid resolutions. Note that in
general these maximum errors decrease as the thickness of the interface is reduced.
The left and right interior plots show the log-log plots of the L2-norm of the error
versus ¢ (values at ) = 5, see below), indicating an O(£?) accuracy of the method as
& — 0 when the integration domain 2 does not have sharp corners.
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F1G. 4.1. Left: The rectangular domain ' in which (4.1) is solved using the SSB method, with
the irregular domain Q (an annulus) shown in gray. Right: Smoothed boundary function »&) given
by (3.2) for £ = 0.10.
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FIG. 4.2. Left: L?-error of the numerical steady state solution of (4.1) in the annulus compared
to the exact steady solution as a function of the parameter n = £/Ax. Right: Same as left but for
the quarter-annulus geometry. See text for details.

Although ¢¢) is a continuous function, it is necessary to have a grid fine enough
to properly resolve the boundary layers in which it quickly changes from zero to one.
For this reason, errors are represented in Figure 4.2 not as a function of the number
of grid points but as a function of the parameter n = £/Az, which gives an idea of the
number of points that lie in the interface (with number of points varying in this case
from 90 to 300 points for £ = 0.10, from 150 to 500 points for & = 0.05, and from 270
to 900 points for £ = 0.025). To ensure that this error is produced only by the spatial
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F1c. 4.3. Left: Solution of (4.1) obtained with the SSB method at steady state in the annulus
1 <r <2. Grid size is 540 x 540 with £ = 0.025. Right: Spatial distribution of the absolute error

|ust — Us(f)| over the annulus for the simulation solution compared to the analytical steady solution.

discretization and is not due to the order of the method chosen to perform the time
integration, we have also run the simulations with a first-order explicit (Euler) time-
integration method and obtained errors of the same order of magnitude. Figure 4.3
shows the solution to (4.1) obtained at stationary state with the SSB method. Contour
lines are also included to illustrate that the no-flux boundary conditions at r = 1 and
r = 2 are satisfied.

The analytical steady state solution of (4.1) also satisfies homogeneous Neumann
boundary conditions on the quarter-annulus delimited by 1 < r <2, 0 < 0 < 7/2
(see Figure 4.4), which also allows us to use this related geometry to show how the
SSB method performs when sharp corners are present in a given geometry. As before,
the L2-norms of the deviations from the analytical steady state are shown in Figure
4.2 (right) for the simulations on the quarter-annulus. Both geometries show similar
convergence properties. However, errors are slightly larger than for the full annulus
due to the presence of the sharp corners, which become slightly blunted when the
smoothed boundary is generated. This is translated into a loss of accuracy of the
method from O(£2) to O(€) for regions with sharp corners (see interior plot in Figure
4.2, right). This can also be seen in Figure 4.4, which shows the error distribution
|ust — Us(f)\ at steady state over the domain 2, along with the corresponding solution.
See how errors are larger when close to the corners of the domain.

In Figures 4.3 and 4.4, we have shown the solutions of (4.1) within the physical
domains of interest, Q. However, solutions U€) are calculated over the entire extended
domain . Figure 4.5 shows the solutions over ' in the full and quarter-annulus
examples. While no-flux boundary conditions are implemented along 0, the overall
solution has periodic boundary conditions. Note that, as the solution U is not
discontinuous on 952, solutions do not present Gibbs phenomena due to the irregular
boundaries.

An important advantage of the SSB method is that when the new formulation
given by (3.1) is used, separate equations are not written for the boundaries, as the
solution automatically adapts to satisfy the boundary conditions on 92, which results
in a very simple computational implementation. Alterations to the domain geometry
therefore can be handled straightforwardly, without generating and implementing
additional boundary condition equations. As an example, we present in Figure 4.6
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Fic. 4.4. Left: Solution to (4.1) in the quarter-annulus 1 < r < 2, 0 < 0 < 7w/2 at steady
state using the SSB method. Grid resolution is 500 x 500 and £ = 0.025. Right: Spatial distribution
of absolute error |usy — Us(f)\ over the quarter-annulus for the simulation solution compared to the
analytical steady solution.

Fi1c. 4.5. Solution to (4.1) using the SSB method over the entire domain of integration Q' for
the annulus shown in Figure 4.3 (left) and the quarter-annulus shown in Figure 4.4 (right). Note
that the periodicity along OQ imposed by the FFT does not alter the solution in Q or at the boundary
O (shown in white), where the zero-fluz boundary conditions are satisfied.

the solution to (4.1) in a more complicated geometry that combines both polar and
Cartesian coordinates. As an analytic steady solution to the equation cannot be easily
obtained in this domain, we evolve it until time t = 5 and compare our solution to the
one obtained using finite elements in the finest mesh that our machine could handle
(P1-Lagrangian elements, mesh made of 31152 nodes and 61440 triangles). At this
resolution, and as shown in Figure 4.6, maximum differences between the solutions
obtained by both methods are small.

4.2. The Allen—Cahn equation. An important partial differential equation
which arises in the modeling of the formation and motion of phase boundaries is the
Allen—Cahn [21] equation

Ou = 2Au — f(u), z in Q,

(4.3) n-Vu=0, x on 0f2,
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Fic. 4.6. Solution to (4.1) at time ¢ = 5 in a more complicated domain (left) and spatial
distribution of the difference between the solutions obtained by the SSB method and using finite
elements (right). Grid resolution is 400 x 400 and £ = 0.05.

where € is a small positive constant and f(u) is the derivative of a potential function
W (u) that has two wells of equal depth. For simplicity, we will assume that W(u) =
(u?—1)2 /4, which makes f(u) = u®—u. In this manner, the Allen-Cahn equation may
be seen as a simple example of a nonlinear reaction-diffusion equation. As explained
in [2], this equation has three fixed-point solutions, u = —1, u = 0, and v = 1. The
middle state is unstable, but the states u = £1 are attracting, and solutions tend to
exhibit flat areas close to these values separated by interfaces of increasing sharpness
as the control parameter € is reduced to zero. Figure 4.7 shows the solution of the
Allen—Cahn equation at t = 25 solved with Neumann boundary conditions on an
annulus with a z-shaped hole using the SSB method, with ¢ = 0.1. The annulus
structure is given by 1 <7 < 5 and the z-hole is formed using radii at 2, 3, and 4 and
angles in steps of 15 degrees (15, 30, 60, and 75 degrees). As an initial condition, two
positive and two negative Gaussian functions located in different parts of the domain
were chosen:

(4.4) u(r,0,0) = i(fl)”+1 exp(—20((z — 7 cos 0;)% + (y — risin 6;)?)),

=1

where pairs (r1,61) = (1.5,7/6), (r2,02) = (4,7/12), (r3,03) = (4.5,7/3), and
(r4,04) = (4,117/24) represent the positions of the Gaussians in polar coordinates.

For comparison we also solved the Allen—Cahn equation using finite elements
in space as in the previous example (P2-Lagrangian elements, mesh made of 8304
elements and 348 boundary elements, 16956 degrees of freedom) and implicit backward
differentiation formula for time integration. Due to the sharp transition of the solution
between —1 and 1, a slight difference in the position of the interfaces can be seen as
a significant error when comparing the solutions obtained by the two methods, but
as shown in Figure 4.7 (right) both the SSB and finite elements solutions are in good
agreement.

4.3. Reaction-diffusion equations and excitable media. Models of ex-
citable media form another significant class of nonlinear parabolic partial differential
equations and describe systems as diverse as chemical reactions [22, 23], aggregation
of amoebae in the cellular slime mold Dictyostelium discoideum [24], calcium waves
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F1G. 4.7. Solution of the Allen—Cahn equation (4.3) at time t = 25 using the SSB method (left)
and errors when compared to the solution obtained using P2-Lagrangian finite elements (right). Grid
size is 360 x 360 with & = 0.025 for the SSB method.

[25], and the electrical properties of neural [26] and cardiac cells [27, 28], among oth-
ers. The equations of excitable systems extend the Allen—Cahn equation by including
one or more additional variables that govern growth and decay of the waves. Solu-
tions of excitable media consist of excursions in state space from a stable rest state
and a return to rest, with the equations describing the additional variables deter-
mining the time courses of excitation and recovery. In spatially extended systems,
diffusive coupling allows excitation to propagate as nonlinear waves, and in multiple
dimensions complex patterns can be formed, including two-dimensional spiral waves
[22,23,24,25,29] and their three-dimensional analogues, scroll waves [30,31]. Well-
known examples of excitable media equations include the Hodgkin—Huxley [26] model
of cells and its generalized simplification, the FitzHugh—Nagumo [32] model.

The dynamics of wave propagation in excitable media has been studied extensively
in regular domains. However, the complex geometry inherent to some systems, such
as the heart, often can have a significant influence on wave stability and dynamics [33].
This fact, combined with the need for high-order accuracy to resolve the sharp wave
fronts characteristic of cardiac models, should make the SSB method a useful tool for
studying electrical waves in realistic heart geometries. Figure 4.8 shows an example
of a propagating wave of action potential in both an idealized (left) and a realistic
(right) slice [34] of ventricular tissue using the SSB method and a phenomenological
ionic cell model [31, 33] with equations of the form

(4.5a) Owu(x,t) =V - (DVu) — Jpi(u,v) — Jso(u) — Jai(u, w)
(4.5b) Ov(x,t) = O(ue — u)(1 —v) /7, (u) — O(u — u.)v/7f,
(4.5¢) dhw(x,t) = O(ue — u)(1 —w) /7, — O(u — u.)w/7.}
(4.5d) Tri(u,v) = —%@(u — ) (1 — u)(u - ),

(4.5¢) Taolt) = 20(uc ) + Tlr@(u —ul),

(4.5) o, w) = — 7“7” (1 + tanh[k(u — u)]),

(4.5g) T, () = O(u — uy)7y; + O(uy — u) T,
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F1G. 4.8. Propagating wave of electrical potential in an idealized (left) and a realistic (right)
slice of ventricular tissue using the SSB method. Grid size is 400 x 400 and & = 0.025 in both cases.
The color code denotes tissue voltage in mV, where red corresponds to cells with higher potential
(depolarization) and blue to cells returning to resting state (repolarization).

Fic. 4.9. Propagating wave of electrical potential and generation of a spiral wave in a realistic
three-dimensional model of rabbit ventricles using the SSB method. See text for details.

where u is the membrane potential; Jy;, Js,, and Js; are phenomenological currents;
v and w are ionic gate variables; and D is the diffusion tensor (isotropic for these
simulations, with value D = 1 ¢cm?/s). In all these formulas, ©(x) is the standard
Heaviside step function defined by ©(z) = 1 for z > 0 and ©(z) = 0 for < 0, and
the set of parameters of the model is chosen to reproduce different cellular dynamics
measured experimentally (for simulations presented here, 75 = 0.25, 7. = 50, 7 = 45,
T = 83, 7,0 = 333, r,; = 1000, 7,, = 19.2, ./ = 667, 7, = 11, u. = 0.13,
u, = 0.055, and u$! = 0.85). Contour lines demonstrate that boundary conditions are
correctly approximated by the method in both geometries.

Finally, Figure 4.9 illustrates the application of the proposed method to realistic
three-dimensional geometries, using for that purpose the full anatomical model of rab-
bit heart ventricles. All the information in the ventricular model originally digitalized
in a finite elements mesh, including fiber orientation, was interpolated and mapped
onto a regular Cartesian grid slightly larger than the structure, of sizes L, = 3.4,
Ly, =3.2,and L, = 3.7 cm and 150 x 150 x 160 grid points, and smoothed with a
value of £ = 0.05. The simulation shows the creation of a spiral wave of electrical
activity in the rabbit ventricles, solutions to the reaction-diffusion equations that are
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closely related to the development of arrhythmias [29,31,33]. In the left image, a
second excitation shock is applied in the wake of the preceding excitation wave to
initiate the spiral wave. In the first moments the second shock cannot move upwards
(central panel) since the tissue has not yet recovered excitability, but starts curving
at the bottom of the heart. The right image of Figure 4.9 shows the evolution of the
self-maintained spiral wave in the tissue. The simulation is perfectly handled by the
SSB method, and the extension of the algorithm is absolutely straightforward from
two to three dimensions.

5. Discussion and future work. In this paper, we have presented a new
method for implementing homogeneous Neumann boundary conditions using spec-
tral methods for several problems of general interest. The SSB method offers several
advantages over finite-difference and finite-element alternatives. Because ghost cells
are not needed, the implementation of boundary conditions requires less coding than
finite-difference stencils. The use of simple Cartesian grids also makes the SSB method
easier to use than finite elements with multiple domain shapes, since grid generation
is not necessary. Furthermore, the use of FFT routines in the SSB method ensures
efficiency and also makes extension of the method to three dimensions straightforward
using well-established routines. Since the method is directly based on the FFT, it is
very simple to implement on high performance computers by using native parallel or
vector FFT libraries.

The most significant limitation of the SSB method is that its accuracy is directly
controlled by the value of parameter £, and therefore it will be more moderate than
the accuracy achieved by any spectral method in a typical rectangular domain. The
error of the method also depends directly on the ratio of the width of the smoothed
boundary £ to the spatial step Ax; this implies that when using uniform grids the
number of points in the discretization needs to be large. This limitation is perhaps
not important for certain classes of problems in which the solution contains steep
wavefronts or other sharp features that require a fine spatial resolution to correctly
reproduce the dynamics of the system, such as electrical waves in cardiac tissue or
shock waves in fluid mechanics. However, for problems with smooth behavior, such
as the heat equation with slowly varying sources, the adequate reduction of error in
domains with irregular boundaries using this method may require an increase in spa-
tial resolution of a factor of 10 or 20 in each direction of the mesh when compared
to what is typically needed to obtain the same accuracy using a spectral method in
a rectangular domain. This need for a large number of points is also a clear disad-
vantage in terms of computational efficiency, and since the accuracy of the method is
controlled more by the width of the smoothed boundary rather than by the order of
the method used to compute the spatial derivatives, an implementation of the method
using a lower order scheme in space, such as the one presented in [18] using finite dif-
ferences, can be significantly more efficient than the implementation presented here
using spectral methods.

Thus, an important future extension of this work is to try to improve the perfor-
mance of the SSB method for problems that do not track features with sharp spatial
gradients. For instance, if the boundary is stationary, it could be useful to compute
the spatial derivatives using any numerical scheme featuring adaptability, such as a
combination of a nonuniform grid with extra resolution along the boundaries and a
nonuniform fast Fourier transform (NFFT), or the use of wavelets [35]. However, if
the boundary moves over time, it might be more efficient to use a fine spatial dis-
cretization than to keep track of the boundary for such problems. Other planned
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future work includes properly handling complex anisotropies in the diffusion matri-
ces, such as those found in cardiac muscle, examining whether the method can be
used to satisfy other types of boundary conditions including Dirichlet and Robin, and
implementing nonstationary boundaries.

In conclusion, we have presented a new numerical method which imposes homoge-
neous Neumann boundary conditions in complex geometries using spectral methods.
We have used this method to solve various partial differential equations in domains
with irregular boundaries and have found good agreement between our solutions and
the ones obtained by standard numerical methods. Along with the overall advantage
of allowing domains of different shapes to be considered with spectral methods in
a very simple way, this method also offers highly accurate discretizations of spatial
derivatives, ease of implementation, straightforward extension to three dimensions,
and applicability to a wide variety of equations. Moreover, SSB codes need not
change to implement different geometries since all the information on the geometry
is contained in the function ¢¢), with the additional advantage that this function
is easy to generate and, unlike finite-element methods, does not require the use of
special software for grid generation.
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